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Abstract—Medical imaging, mainly Magnetic Resonance Imag-
ing (MRI), plays a predominant role in healthcare diagnosis.
Nevertheless, the diagnostic process is prone to errors and is con-
ditioned by available medical data, which might be insufficient.
A novel solution is resorting to image generation algorithms to
address these challenges. Thus, this paper presents a Deep Learn-
ing model based on a Deep Convolutional Generative Adversarial
Network (DCGAN) architecture. Our model generates 2D MRI
images of size 256x256, containing an axial view of the brain
with a tumor. The model was implemented using ChainerMN, a
scalable and flexible framework that enables faster and parallel
training of Deep Learning networks. The images obtained provide
an overall representation of the brain structure and the tumoral
area and show considerable brain-tumor separation. For this
purpose, and owing to their previous state-of-the-art results in
general image-generation tasks, we conclude that GAN-based
models are a promising approach for medical imaging.

Index Terms—Deep Learning, Generative Adversarial Net-
works, Image Generation, Medical Images

I. INTRODUCTION

It is known that an accurate medical diagnosis is funda-
mental for patient treatment, and the faster the patient is
diagnosed, the greater the probability of successful treatment.
Medical images, mainly those from Magnetic Resonance
Imaging (MRI), play a predominant role in diagnosing and
providing healthcare because decision-making by doctors fre-
quently relies on their interpretation [1]. Nevertheless, diag-
nostic error is inherent to this process and may bias medical
judgment and decisions regarding the (possible) pathology
observed, as well as the type, period, and options of treat-
ment. One way to achieve better diagnostic accuracy (and
consequently reduce diagnostic errors) is to use computer-
aided systems [2]. Hence, computer-aided diagnosis — and,
focusing on medical images, the existence of Deep Learning
(DL) models — presents a viable option compared to manual
diagnostics to attempt to reduce diagnostic errors. However,
the publicly available medical data for model training and
research are limited because they depend on the number of
medical imaging scans performed in a healthcare institution.
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Data augmentation techniques have been extensively used to
expand datasets [3], and can be used to mitigate this problem.
Data augmentation “encompasses a suite of techniques that
enhance the size and quality of training datasets” [4] and can
be divided into two groups: oversampling and data warping.
Some data augmentation techniques include flipping, rotation,
cropping, noise injection, and translation [4]. Image generation
with Deep Generative Models may present itself as a data
augmentation strategy because this type of model enables the
generation of artificial samples from a dataset such that they
embody similar features to those of the original image set.
Generative Adversarial Networks (GANs), for instance, have
received increased interest and attention for their application
in data augmentation because of their ability to synthesize new
training samples [3], [4].

Medical image analysis is closely related to a high volume
of data; for each patient, hundreds of image slices may be
generated using diverse imaging techniques and dimensions
(e.g., time series and 3D images). Each slice is generally
stored as an individual image in the Digital Imaging and
Communications in Medicine (DICOM) [5] format or as a
volume in the Neuroimaging Informatics Technology Initiative
(NIfTI) format [6] and might have a significant size. Moreover,
this type of image is typically more challenging to analyze than
generic images because of the complex parameters (such as
contrast agents and specific settings) and anatomic differences.
Traditional methods become obsolete when deployed to large-
scale medical data environments, whether because of the data
volume or the long processing time associated with it [7].
With this, the use of distributed techniques and frameworks is
an alternative to address these challenges, as it provides fast
computing while handling large volumes of data.

In this study, we developed a DL model that can be used
to address the scarcity of data available for model training.
Thus, we design and implement an image generation model
that can be used as groundwork to be deployed in distributed
environments. The DL model should receive as input a medical
image set (of MRI images) containing some abnormality,
pathology, or suspicious area and, from those images, would
generate new images that may then be stored in a database
and be available for consulting. Consequently, it is expected
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to obtain a set of new images — realistic and analogous to
the original ones — so that more data can be provided to train
new DL models in the identification of specific conditions and,
therefore, improve medical care.

II. OUR APPROACH
A. Data and Pre-Processing

We used training data from the Brain Tumor Segmentation
(BraTS) 2020 Dataset [8]-[10]. It is composed of “routine
clinically-acquired pre-operative multimodal MRI scans of
glioblastoma (GBM/HGG) and lower grade glioma (LGG),
with a pathologically confirmed diagnosis”, acquired using
various scanners from 19 institutions and with different clinical
protocols [11]. The scans are available as NIfTI [6] files and
include T1, post-contrast T1-weighted, T2-weighted, and T2
Fluid Attenuated Inversion Recovery (T2-FLAIR) volumes
from 369 subjects. All of the data are “co-registered to the
same anatomical template, interpolated to the same resolution
(1 mm?) and skull-stripped” [11].

We selected the T2-FLAIR volumes from 15 subjects (sub-
ject ID 001 to 015) and sliced them by the axial plane using
the 3D Slicer software [12]. From the 155 slices obtained for
each subject, only 48 (slices #60 to #107) were selected due to
their better representation of the brain and tumor structures,
yielding a total of 720 images. GAN outputs are typically
square, and since their original size was also approximately
square, we considered that resizing the images would not have
a significant impact on the proportionality of the brain and
tumor structure. Thus, they were resized to 256256 pixels.

B. Developed Model

The model developed in this paper consists of an implemen-
tation based on the Deep Convolutional Generative Adversarial
Network (DCGAN) architecture proposed by Radford et al.
[13]. The Generator (G) receives as input a 128-dimensional
distribution and is composed of a fully-connected layer and
seven 2D transposed convolutional layers, with the initial
seven layers being followed by a batch normalization layer.
The activation is with Leaky ReLU (« = 0.2) in the first six
layers and Tanh in the last convolutional layer. Furthermore,
as suggested by Isola et al. [14], dropout was applied for every
layer of G. This architecture is summarized in Table I.

TABLE I
SUMMARY OF THE GENERATOR ARCHITECTURE, WHERE T. CONV IS
TRANSPOSED CONVOLUTION

Generator Activation Output shape
Input noise — 128 x 1 x 1
Fully-connected layer — 16384

Reshape — 1024 x 4 x 4

T. Conv 4 X 4 Leaky ReLU 512 X 8 X 8
T. Conv 4 X 4 Leaky ReLU 256 x 16 x 16
T. Conv 4 x 4 Leaky ReLU 128 x 32 x 32
T. Conv 4 x 4 Leaky ReLU 64 X 64 x 64
T. Conv 4 x 4 Leaky ReLU 32 x 128 x 128
T. Conv 4 x 4 Leaky ReLU 3 X 256 x 256
T. Conv 3 x 3 Tanh 3 X 256 X 256
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The Discriminator (D), in turn, consists of nine 2D convo-
lutional layers and a fully-connected layer, where each layer
is followed by batch normalization, except for the input and
fully-connected layers. ReLU activation is used in the initial
eight convolutions and Sigmoid in the last. Moreover, noise
samples from a Normal distribution were added as input
in every layer, as suggested by Arjovsky et al. [15]. This
architecture is summarized in Table II.

C. Training Parameters

The model was trained using the Wasserstein loss concept
[16] and a batch size of eight. The weights were initialized as
proposed by Radford et al. [13], that is, from a zero-centered
Normal distribution with a standard deviation of 0.02. The
optimization algorithm was Adam [17] with o = 0.0002, 8; =
0.5, and a Weight Decay rate of 0.001 for both the Generator
and the Discriminator.

The DL model was implemented using the ChainerMN
framework [18], enabling the distribution of the dataset and
all parameters associated with the training process by several
nodes. The training process was performed using an NVIDIA
GeForce RTX 2070 SUPER GPU.

III. RESULTS AND DISCUSSION

The model generates several stacks of 100 3-channel 2D
images of size 256x256 pixels, each containing an axial view
of a brain with a tumor, where, similarly to the original T2-
FLAIR MRI image scans, the gray area represents the brain
tissue and the white area represents the tumoral tissue. Fig. 1
shows images from the original dataset and synthetic images
generated by the model, while Fig. 2 shows a comparison
between images generated in the initial and final experiments
(the initial experiments were performed without dropout, with
a 100-dimensional input distribution and a batch size of 64,
while the final experiments were done with the architecture
and parameters described in Section II).

The generated images provided an overall representation of
the brain structure and tumoral area. As can be observed,
these images possess a noticeable grid pattern rather than
being smooth and uniform. This is a result of the transposed
convolutions on the Generator architecture used to perform
upsampling of the input images. As an attempt to diminish that

TABLE I
SUMMARY OF THE DISCRIMINATOR ARCHITECTURE

Discriminat Activation Output shape
Input — 3 % 256 x 256
Conv 4 x 4 ReLU 32 x 128 x 128
Conv 4 x 4 ReLU 64 X 64 x 64
Conv 4 x 4 ReLU 128 x 32 x 32
Conv 4 X 4 ReLU 156 x 16 x 16
Conv 3 X 3 ReLU 156 x 16 x 16
Conv 4 X 4 ReLU 512 X 8 X 8
Conv 3 x 3 ReLU 512 x 8 x 8
Conv 4 x 4 ReLU 1024 x 4 x 4
Conv 3 x 3 Sigmoid 1024 x 4 x 4
Fully-connected layer — 1
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Fig. 1. Comparison between real MRI images (upper row), success cases
(middle row), and failure cases (lower row)

Fig. 2. Images generated in the initial (upper row) and final (lower row)
experiments

“checkerboard” effect, we followed Odena et al.’s [19] sugges-
tion and added the last convolutional layer to the Generator
(represented in Table I by T. Conv 3 x 3). Nevertheless, it
resulted in only a slight improvement (not as much as desired).

The images show considerable brain-tumor separation,
achieved with changes in the activation functions of Generator
layers. Leaky ReLU on the hidden layers yielded better results
than ReLU since it substantially improved the distinction
between the two areas and the image definition (Fig. 3). On the
last convolution, between Tanh and Sigmoid, the latter resulted
in blurrier images and less evident borders, so the activation
chosen was Tanh.

The image noise was initially extremely high; consequently,
it was necessary to apply conjugated changes to the Generator
and Discriminator. In the former, the use of dropout on
all layers significantly decreased the noise in the generated
images, as shown in Fig. 4. In the Discriminator, that aspect
was diminished by altering the activation functions: on hidden
layers, ReLU yielded better results compared to ELU or Leaky

Fig. 3. Images generated by the model with ReLU (left) and Leaky ReLU
(right) activation
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Fig. 4. Images generated before (left) and after (right) using dropout in G

ReLU, whereas on the output, Sigmoid outperformed Tanh.

Some training parameters also influenced the noise in the
generated images. Training with a batch size of 8 instead of
16 or 64 was preferable because it yielded a reduction in
image noise. A similar effect was observed when using the
Adam optimizer rather than the Stochastic Gradient Descent
(SGD) in both the Generator and Discriminator (Fig. 5),
with a = 0.0002 resulting in better image quality and more
stable performance compared to o« = 0.001 or = 0.005.
Additionally, we found that using 128 units as input noise for
the Generator led to better performance than 100 or 256 units
and that training with 150 epochs resulted in an “overtraining”
of the model, i.e., the samples generated were of poor quality
due to excessive training.

Mao et al. [20] proposed the use of Mean Squared Error
(MSE) as the loss function in G and D; however, in this
particular model, it resulted in images simply consisting of
white blurs (Fig. 6). Hence, we opted for the Wasserstein [16]
loss concept, which is implemented by multiplying the loss of
real samples by -1 and the loss of generated samples by 1. This
allowed the polarization of the scores for real and generated
images, increasing their distance [21], [22].

However, our findings have some limitations regarding
image quality, brain borders, and brain-tumor borders. The
grid effect resulting from the transposed convolutions might
be a reason for these limitations because it gives a pixelated
appearance to the images. Moreover, the Wasserstein loss
function [16], which has not been fully implemented, as
suggested by the authors, may also contribute to a decrease in
quality and definition. The amount of data used for training is
another possible cause for the lack of detail in the generated
images because GANs are usually trained with thousands
of image slices. It is also possible that the values set for

Fig. 5. Images generated with SGD (left) and Adam (right) optimization

Fig. 6. Sample generated with MSE as the loss function
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the hyperparameters were not the most adequate for this
specific model, which would require further experimentation
for verification.

It was observed that slight changes in the hyperparameters
had a significant impact on the performance, and consequently,
on the quality of the results. Moreover, we noticed that the
last epochs of training yielded results consistent with “mode
collapse” on the Generator, so it became evident that more
training time does not necessarily lead to better results.

In general, the model was able to generate images with
different axial views of the brain and containing tumors located
in various zones. We were able to validate two hypotheses:

o We successfully implemented a complex model using an
adequate framework for distributed training;

Although the training data is inferior to that of typical
image generation with GANs, we were able to obtain
results that allow clear recognition of the represented
structures and include images representing different axial
views of the brain and tumors located in various areas.

IV. CONCLUSIONS AND FUTURE WORK

In healthcare, the need for more imaging data to improve the
diagnostic process is a recurring problem that may be solved
by generating new images. While resembling real images,
these new images could serve the training purpose within the
research and development of DL models for computer-aided
diagnosis.

Following this, we developed a DL model based on the
DCGAN architecture that receives real MRI scans as input
and generates 2D MRI images of size 256x256 that contain
an axial view of the brain with a tumor. Our findings provide
a general representation of the brain structure and the tumoral
area and show an easy differentiation between the two struc-
tures. Moreover, they are diverse in terms of axial views and
tumor location.

Current limitations can be addressed in future work. First,
the grid effect should be minimized. This can be achieved
by changing the transposed convolutions so the kernel size
is divisible by the stride (thus removing overlaps) or by
using a different upsampling strategy (e.g., upsample layer
followed by convolutional layer). Secondly, it is important to
obtain high-definition images with more visible details and
clearer borders between the brain and the tumoral tissue. Third,
theoretically, a larger amount of input images should allow
for improving the model performance. Also, this work should
accompany clinical validation of the results, for example, with
visual Turing tests applied to medical professionals.

Finally, the distribution of DL workloads is a hot research
area when applied to the healthcare environment. This work
builds upon a DL framework that allows resorting to dis-
tributed environments, namely High-Performance Computing
(HPC). An important future direction is to experimentally vali-
date the previous model in these fully-distributed environments
and with real-world scenarios.
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