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Abstract—Programmable caching engines like CacheLib are
widely used in production systems to support diverse workloads
in multi-tenant environments. CacheLib’s design focuses on per-
formance, portability, and configurability, allowing applications
to inherit caching improvements with minimal implementa-
tion effort. However, its behavior under dynamic and evolving
workloads remains largely unexplored. This paper presents an
empirical study of CacheLib with multi-tenant settings under
dynamic and volatile environments. Our evaluation across mul-
tiple CacheLib configurations reveals several limitations that
hinder its effectiveness under such environments, including rigid
configurations, limited runtime adaptability, lack of quality-of-
service support and coordination, which lead to suboptimal
performance, inefficient memory usage, and tenant starvation.
Based on these findings, we outline future research directions to
improve the adaptability, fairness, and programmability of future
caching engines.

Index Terms—Programmable caches, CacheLib, Multi-
tenancy, Adaptability.

I. INTRODUCTION

Data-intensive systems, such as databases, key-value stores,
content delivery networks (CDNs), and machine learning
engines, have become a fundamental part of modern I/O
infrastructures [1]. To process large volumes of data with
high throughput and low latency, these systems rely on in-
memory caching. Typically, each system employs a cache
optimized for its specific requirements, including read-write
ratio, access distribution, I/O granularity (block, file, object),
and concurrency model (e.g., single vs. multi-tenant) [2], [3].

Despite their differences, caching systems often share com-
mon goals and face similar challenges (e.g., interfaces, eviction
policies, memory allocation strategies). The lack of a unified
cache abstraction leads to fragmented features, duplicated
engineering efforts, and significant maintenance overhead. To
address these limitations, Meta introduced CacheLib [2], a
general-purpose, programmable caching engine that provides a
common set of building blocks for designing high-performance
caches. Through a flexible and extensible API covering cache
indexing, thread-safe structures, eviction policies, memory
management, and multi-tenancy isolation, CacheLib enables
the design of caches fine-tuned for diverse data-intensive
systems. Its success stems from configurability and perfor-
mance portability, allowing applications to inherit caching
improvements without major reimplementation.

Today, CacheLib powers more than 70 Meta services
(e.g., CDNs, key-value stores, recommendation engines,
databases) [2], Pelikan.io, and several research initiatives [4].
For ease of management and cost efficiency, multiple services

and applications are often co-located on the same compute
node, each managing its own cache instance. Even a single
application may employ multiple caches (e.g., with different
eviction policies and sizes) to serve distinct workloads [2], [5].

While CacheLib provides a strong foundation, important
questions remain in the context of shared, multi-tenant deploy-
ments: i) how does CacheLib simplify memory management
under multiple tenants? ii) how does it handle workloads with
evolving access patterns and dynamic resource demands?

This paper presents the first empirical study of CacheLib’s
performance and adaptability in dynamic, multi-tenant envi-
ronments. Our study reveals several limitations that open new
research directions.

Rigid configuration model. CacheLib’s configuration model
is too rigid for the dynamic nature of co-located workloads.
Although it exposes many tuning knobs (i.e., eviction policies,
memory allocation, and rebalancing schemes), these param-
eters are typically set at initialization and do not adapt to
changing workloads (e.g., shifting access distributions, tenants
joining or leaving), leading to suboptimal performance.

Limited adaptability. CacheLib includes mechanisms such
as the pool optimizer to adjust memory allocations at run-
time. However, our study shows these mechanisms are often
ineffective under shifting workloads, resulting in performance
variability and inefficient memory use.

Lack of quality-of-service (QoS) support. CacheLib’s ag-
gressive reallocation strategies prioritize global cache effi-
ciency over individual tenants. Without QoS guarantees, pri-
oritization, or differentiation mechanisms, this behavior can
lead to starvation, especially for latency-sensitive workloads
that share resources with more aggressive tenants.

Lack of inter-instance coordination. Multiple CacheLib
instances can run on the same compute node but operate in
isolation. This lack of coordination prevents efficient resource
utilization and holistic memory rebalancing, especially under
skewed workloads where some instances are underprovisioned
while others are overprovisioned.

In summary, our findings show that while CacheLib offers
key building blocks for multi-tenant environments, it falls short
in handling the complexities introduced by dynamic workloads
and shared resources. To bridge this gap, we identify several
research directions to improve CacheLib’s adaptability, inter-
instance coordination, and QoS support, making it more ef-
fective and robust for modern data-intensive applications.
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Fig. 1: CacheLib design overview (a) and typical applicability models
in production (b-c).

II. BACKGROUND

This section provides background on the CacheLib engine,
outlining its design, core functionalities, and applicability.

A. CacheLib overview

CacheLib [2] is an embeddable caching library developed
by Meta, designed for high performance in concurrent en-
vironments. Its architecture emphasizes memory efficiency,
workload isolation, and runtime adaptability. It exposes a
simple, thread-safe interface where users can store and retrieve
items using a key-value pair abstraction. At its core, CacheLib
comprises four main components, as depicted in Fig. 1 (a). The
memory pool, an isolated region with independent allocation
strategies, eviction policies, and memory limits, stores and
serves data items. The pool rebalancer and pool resizer min-
imize memory waste and fragmentation by moving memory
within and across pools. The pool optimizer aims at improving
overall memory usage by dynamically resizing each pool.
Memory allocation and fragmentation management.
CacheLib employs a slab-based memory allocation scheme to
minimize external memory fragmentation. Rather than allo-
cating variable-sized chunks, it partitions memory into fixed-
size slabs, each associated with a (slab) class that stores items
of similar size. Each slab class manages its own memory
region, and a single memory pool may contain multiple
slab classes. Once memory has been allocated across slab
classes, the system enters a static state, which can lead to
slab calcification. This phenomenon occurs when slabs are
assigned to item sizes that are no longer accessed, leading to
wasted memory and allocation failures for other slab classes.
To mitigate this, CacheLib integrates a pool rebalancer, a
background worker that 1) identifies imbalanced slab classes
within a memory pool, 2) selects a victim class with surplus
slabs, and 3) transfers slabs to a receiver class with higher
demand. Moreover, each pool employs a configurable rebal-
ance strategy to guide the slab distribution, such as minimizing
allocation failures or maximizing per-item hit ratio.
Multi-tenancy support. To support multiple concurrent work-
loads, CacheLib enables the creation of numerous memory
pools, each isolating a specific workload or tenant, enabling

flexible memory partitioning within the same CacheLib in-
stance. By default, each pool is assigned a static memory
limit. While users can adjust this limit at runtime, increasing
a pool’s allocation does not guarantee it will immediately
receive more memory, as slabs may remain held by other
pools until explicitly rebalanced. To enforce these limits,
CacheLib implements a pool resizer, a background worker
that 1) identifies pools exceeding their configured memory
limits, 2) selects slabs from pools exceeding their capacity,
and 3) transfers them to underprovisioned ones. This process
allows the system to better enforce memory limits, but does
require manual intervention to initiate resizing. Moreover, each
memory pool implements a resize strategy (e.g., maximize hit
ratio, minimize allocation failures) to guide the resize process.

Adaptive memory management. To reduce manual config-
uration overhead, CacheLib implements the pool optimizer, a
background worker for automatic pool resizing [4]. It contin-
uously monitors the workload, analyzes access patterns at the
tail of the eviction queue to estimate workload pressure, and
proposes new memory limits for each pool to enhance overall
hit ratio. To enforce these limits, the pool optimizer and resizer
must operate together.

B. CacheLib request workflow

The request workflow in CacheLib is divided into two parts:
the foreground flow, which handles read and write requests
submitted by the application, and the background flow, which
manages internal system operations.

Foreground flow. Applications interact with the cache by
inserting and retrieving data objects through a key-value pair
abstraction. On writes, the application first attempts to allocate
memory for the object within the target pool. If the allocation
succeeds, the application copies the data into the allocated
region, and only then can the transaction be committed to
the cache. It is the application’s responsibility to ensure data
persists in durable storage. On reads, given a key, CacheLib
searches across all memory pools and returns the object if
found, or if a cache miss occurs, otherwise, leaving the
responsibility of retrieving data from persistent storage to the
application.

Background flow. The background flow is responsible for
maintaining the cache’s internal structure and adapting to
workload changes through background workers, including the
pool rebalancer, resizer, and optimizer (§II-A). These opera-
tions are executed periodically, asynchronously, and indepen-
dently of the foreground flow, allowing CacheLib to adapt to
workload changes without interrupting application service.

C. Usage in production environments

CacheLib supports a range of deployment scenarios, depend-
ing on the number of applications and tenants involved. This
section highlights two common production setups, which serve
as the foundation for the discussion in the following sections.

Single instance, multiple tenants. As depicted in Fig. 1 (b), a
single application or service, such as CDNs, key-value stores,



social-graph systems, and databases, can use just a single
CacheLib instance to support multiple tenants [2]. Tenants
are typically represented by distinct threads, processes, or
components with different request patterns and memory needs.
Each tenant is assigned a dedicated memory pool, ensuring
isolation and predictable performance.
Multiple instances. As depicted in Fig. 1 (c), multiple Cache-
Lib instances are deployed on the same compute node, each
serving a different application or service, which is common
in complex data-intensive software stacks, such as those used
by Uber, Amazon, and more [6]–[8]. Instances operate in iso-
lation, with individual configurations and allocation policies,
configured with a fixed memory limit.

III. UNDERSTANDING CACHELIB PERFORMANCE

To understand the performance and adaptability of CacheLib
under dynamic and heterogeneous environments, we seek to
answer the following questions:
• How does CacheLib perform under varying workload re-

quest popularity distributions?
• How does CacheLib perform under different memory parti-

tioning?
• Can CacheLib adapt to dynamic and evolving workloads?

Hardware and OS configurations. Experiments were con-
ducted on compute nodes of the Deucalion supercomputer
equipped with 2× 64-core AMD EPYC 7742 processors,
256 GiB of memory, and a 480 GiB SSD, running RockyLinux
8. Software-wise, we used CacheLib v20231101.
Methodology. The experimental testbed consists of three
components: a benchmark that acts as the application and
generates requests with varying access distributions, a Cache-
Lib instance that caches the application’s read requests, and
RocksDB as the persistent storage backend. Write operations
are always submitted to RocksDB, and to avoid cache incoher-
ence, the write operation is propagated to the cache if the item
was previously cached. For reads, requests are first submitted
to CacheLib – on a cache hit, it returns the corresponding item
to the application; on a cache miss, the application fetches the
item from persistent storage and inserts it in the corresponding
CacheLib memory pool. Further, to isolate the performance
benefits of CacheLib, both RocksDB’s internal block cache
and the page cache were disabled.

As in previous studies ([9]–[11]), we evaluated CacheLib’s
performance in a heterogeneous multi-tenant environment by
conducting experiments with 4 tenants, each configured with
different workload characteristics and memory limits.
Workloads. Experiments were conducted using read-only
workloads, as it is common in evaluating caching systems [2],
[9], [12]. Each tenant is configured with a distinct workload
distribution, emulating access patterns observed in production
environments [13]. Specifically, tenants T1, T2, and T3 were
assigned with Zipfian distributions with skew factors of 1.2,
0.9, and 0.6, respectively, while tenant T4 was configured
with a uniform distribution. Further, each tenant operated on
an exclusive key-space containing 20 million unique items,

each 1 KiB in size, totaling approximately 20 GiB of data.
Unless stated otherwise, all tenants execute their workloads
concurrently over 2500 seconds. Additionally, before workload
execution, the 20 million unique key-value pairs of 1 KiB
each are pre-loaded into the storage backend for each tenant,
totaling approximately 80 GiB of data. As such, the size of the
CacheLib instance was configured to store only up to 10% of
the dataset, similarly to previous studies ([12], [14]), resulting
in a total memory capacity of 8 GiB partitioned into four
memory pools, each dedicated to a specific tenant.
Setups. To explore the impact of different memory manage-
ment strategies, with three CacheLib configurations: baseline
refers to the default CacheLib, where only the pool rebalancer
worker is enabled; custom extends the baseline setting by
integrating a custom memory allocation policy which, in
combination with the pool resizer, enforces dynamic memory
limits defined by the user for each pool; and optimizer enables
pool resizer and pool optimizer workers. Workers from both
custom and optimizer execute every second; the pool resizer
was set with a resize strategy to maximize hit ratio, which
best suits our needs.

A. Memory partitioning under static workloads

We begin by evaluating the performance and adaptability
of different CacheLib configurations in a static environment,
where all tenants start and complete their workloads simultane-
ously. We use the following configurations that apply distinct
memory allocation policies:

• Baseline: memory is allocated uniformly across all tenants,
with each pool receiving 25% of the total cache capacity.

• Custom: favors the tenant with the highest Zipfian skew,
allocating 91% of the cache capacity to T1, while the re-
maining space is evenly distributed across the other tenants.

• Optimizer: initially adopts a uniform allocation but dynami-
cally adjusts the memory distribution during execution based
on the observed cache performance metrics, and is tuned to
maximize overall throughput.

Results. Fig. 2 and 3 illustrate, respectively, the per-tenant
and global throughput and allocated memory under the three
CacheLib configurations. As expected, throughput varies sig-
nificantly across tenants due to their different data distribu-
tions. In the baseline setup, after the initial cache warm-up, T1

reaches ≈140 kops/s, outperforming T2, T3, and T4 by 14×,
25×, and 28×, respectively. These results highlight that uni-
form memory allocation can lead to imbalanced performance
when tenants exhibit heterogeneous access patterns.

The custom configuration shows that favoring highly
skewed workloads yields significant performance gains. As
depicted in Fig. 3, the overall system throughput improves
up to 1.8× compared to the baseline, with T1 experiencing a
throughput of up to 280 kops/s. This is because the number of
I/O requests to the backend grows inversely with the hit ratio,
meaning that small increases in hit ratio lead to significant
throughput improvements when the hit ratio is already high. In
the case of T1, which follows a highly skewed distribution, fur-

https://github.com/facebook/CacheLib/releases/tag/v20231101_RC1
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Fig. 2: Per-tenant performance comparison across CacheLib baseline, custom, and optimizer setups (columns). Each row depicts the
throughput (kops/s) and allocated memory (GiB) over time of each tenant (T1 to T4). The left y-axis presents the throughput (line), while
the right y-axis presents the memory allocated (filled area).

ther gains in hit ratio/throughput required a disproportionately
larger share of memory, thus the 91% allocation. However, if
the goal was instead to maximize hit ratio across all tenants
or to ensure fairness, this partitioning might not be optimal.

Observation 1. Under heterogeneous workloads, uniform
memory allocation can lead to severe performance imbal-
ance. Fine-tuning cache partitioning according to work-
load distribution can significantly improve throughput.

As depicted in Fig. 2, the optimizer setup begins with
the same uniform memory distribution as the baseline but
gradually reallocates memory based on observed workload
behavior. This process, however, requires a warm-up period
to collect enough statistics. Only after ≈500 seconds, the
optimizer begins adjusting memory allocations effectively,
converging toward an improved state. Despite this initial delay,
as observed by Fig. 3, the overall throughput of optimizer is
higher than the baseline configuration, reaching ≈290 kops/s,
a 1.85× improvement under the same memory capacity.

Observation 2. Dynamically reallocating memory based
on workload characteristics can outperform static config-
urations, even under identical resource constraints.
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Fig. 3: Overall throughput under different allocation policies.
Workload-aware memory allocation substantially outperforms uni-
form policies.

Interestingly, a closer inspection (Fig. 2) reveals that the
optimizer reallocates nearly the entire cache capacity to T1,

increasing its memory pool from 2 GiB to ≈8 GiB. This
leads to starvation of the remaining tenants, whose throughput
significantly drops, even falling below the performance ob-
served under the baseline setup. While such behavior might be
suited for environments where maximizing the global through-
put is the primary goal, it is incompatible with scenarios
that require per-tenant quality-of-service (QoS) guarantees or
enforce different priority levels. Under these scenarios, even
if global throughput is improved, the optimizer’s aggressive
reallocation strategy compromises the performance isolation
expected between tenants.

Observation 3. Without QoS or prioritization mecha-
nisms, CacheLib’s dynamic reallocation strategy can lead
to starvation, compromising the performance isolation
across tenants and resulting in unfair memory attribution.

B. Memory partitioning under dynamic workloads

Both baseline and custom configurations rely on static mem-
ory allocation, where the memory assigned to each tenant is
fixed at setup time. While this approach can be effective in
stable scenarios, where workload characteristics and system
settings remain constant over time, this may not hold for more
volatile environments.

We now evaluate different CacheLib setups under such
environments, where tenants enter and leave the system at
different points in time. Specifically, tenants are added to the
system sequentially every 500 seconds, and after all tenants
are active for 500 seconds, they leave the system in reverse
order of arrival. The initial memory allocations across tenants
follow the same setup as in §III-A. For the custom setup,
the allocation policy was adapted with the following rules: 1)
at the start up time, no tenant is allocated with more memory
than its expected demand, and 2) any leftover memory capacity
if available is proportionally distributed among active tenants
to prevent underutilization of memory resources. Finally, the
baseline configuration is omitted from this experiment, as it
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Fig. 4: Per-tenant performance comparison across CacheLib custom and optimizer setups under dynamic workloads. Each row depicts
the throughput (kops/s) and allocated memory (GiB) over time of each tenant (T1 to T4). The left y-axis presents the throughput (line), while
the right y-axis presents the memory allocated (filled area).
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Fig. 5: Overall throughput under dynamic workloads. Workload-
aware reallocation outperforms static or delayed adaptation.

is not capable of adapting to dynamic workloads, thus would
exhibit the same behavior as in §III-A.

Results. Fig. 4 depicts the throughput and memory allocation
per tenant under the custom and optimizer setups. Contrary to
the previous results (§III-A), the optimizer fails to reallocate
memory dynamically and converge to an improved state since
tenants are active for too short a period, resulting in insuffi-
cient data to trigger reallocation. Nevertheless, even if tenant
interleaving periods were larger, the optimizer could still fail to
converge due to erroneous memory allocation decisions under
the rapidly changing nature of the workloads. In any case,
the optimizer fails to adapt and remains with a static memory
allocation of 25% of the total cache capacity to each tenant,
achieving a maximum throughput of ≈170 kops/s.

On the other hand, as depicted in Fig. 5, the custom
configuration achieved a peak throughput of ≈315 kops/s,
a 1.85× improvement over the optimizer under the same
memory constraints. This improvement stems from two key
factors. First, the startup memory allocations of custom are
better aligned with the expected workload characteristics,
ensuring each tenant receives a memory share closer to its
actual demand. Second, the custom policy reclaims and redis-
tributes unused memory proportionally among active tenants,
improving overall resource usage and throughput. For instance,
during the first 500 seconds of the experiment, when only T1

is active, while the optimizer limits T1 to 25% of the cache,

the custom setup allocates the full cache capacity, maximizing
its performance. As additional tenants join, the custom policy
continues to dynamically adjust memory allocations propor-
tionally, ensuring effective cache usage.

Observation 4. To maximize cache effectiveness in
dynamic environments, it is fundamental to combine
workload-aware memory allocation primitives with pro-
portional redistribution of unused memory resources.

IV. DISCUSSION

CacheLib made significant contributions to the design of
programmable caching engines, particularly for multi-tenant
environments. Despite offering a pool optimizer for better
resource management, our study highlights that CacheLib still
faces challenges in handling dynamic workloads on multi-
tenant deployments, which opens up the path for new research.

Handling dynamic workloads. Our study shows that the pool
optimizer cannot properly handle dynamic tenants, leading to
inefficient memory allocation and underutilization of available
resources. In particular, when tenants frequently join or leave
the system, such as in applications with background jobs
(e.g., RocksDB compactions) or social networks with services
experiencing idle periods followed by bursts of activity (e.g.,
Twitter [13]), the pool optimizer fails to react promptly and
adequately. To address this, the prediction mechanism could be
improved using techniques such as Miss-Ratio Curves (MRCs)
to describe how hit-ratio, throughput, or latency varies with
distinct pool sizes [15], [16].

Handling multiple instances. CacheLib instances operate in
isolation, leading to the absence of global coordination. Han-
dling dynamic workloads across multiple instances becomes
more challenging, as the pool optimizer only manages pools
within the same instance, preventing memory from being
reallocated across instances and limiting overall resource effi-
ciency. This isolation also hinders the ability to enforce QoS



guarantees to prioritize critical tenants over less critical ones.
Solving this challenge will require a coordinated resource
management layer across instances, with QoS-aware policies
and, potentially, through a centralized controller capable of
monitoring cache usage and enforcing tenant-specific perfor-
mance targets across the entire infrastructure [17], [18].

Related work and study generalizability. This paper focuses
on CacheLib, given its widespread adoption. Nonetheless,
several other caching solutions have been proposed to address
multi-tenant workloads. Dynacache [19], Cliffhanger [20],
AdaptSize [21], zExpander [14], FrozenHot [12], LAMA [22],
AdaptCache [11], and SegCache [10] focus on general cache
optimizations, such as reducing latency, increasing throughput,
improving hit ratios, or balancing memory usage, by em-
ploying different strategies, including workload monitoring,
adaptive resizing, and probabilistic policies. However, these
approaches are tenant-oblivious, as they aim to maximize
cache performance rather than providing tenant fairness and
isolation, crucial for multi-tenant environments such as those
supported by CacheLib. This limitation often leads to ag-
gressive tenants monopolizing cache resources, inadvertently
evicting other tenants’ working sets, leading to performance
degradation and QoS violations [9], [13].

As for systems that explicitly address QoS, Moirai [3],
Pisces [9], Centaur [15], and RobinHood [5] implement tenant-
aware management techniques to meet specific performance
objectives. For instance, Centaur employs optimization algo-
rithms, such as Simulated Annealing (SA) combined with
Miss-Ratio Curves (MRCs), to optimize the cache partitioning
and allocation of resources across multiple tenants to meet
the specified performance constraints [15]. However, these
systems are typically fine-tuned for specific workloads and
storage scenarios, such as hypervisors and key-value stores,
limiting their generalizability to broader multi-tenant caching
environments like those targeted by CacheLib. For example, a
prediction model designed for block caches assumes uniform
item sizes, whose assumption breaks down in key-value stores,
which handle variable-sized items, leading to inaccurate per-
formance estimations [15], [16].
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