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The addition of Federated 
Learning to Urban 
Transportation enables the 
promotion of sustainable and
personalised travel 
behaviours while preserving 
data privacy.

• GeoLife dataset was used to train and create general 
labels for the transportation modes (e.g., car, 
foot, bus).

• The system was tested with 10 clients, achieving 
around 75% accuracy.

3. Results

• Study the trade-offs between data privacy and models 
accuracy when applying differential privacy.

• Assess with realistic scenarios and datasets.

4. Future Directions

• Cities worldwide have ambitious goals regarding 
carbon neutrality.

• Users’ lack awareness on their carbon footprint and 
the motivation to change habits.

• There is still reluctancy to use software tools due 
to possible leakage of users’ private data.

1. Introduction

The main goal is to preserve the privacy of users’ 
data while increasing awareness on their carbon 
footprint. 

We propose a methodology that:
1. Detects and classifies transportation modes based 

on ML/DL models. 
2. Estimates CO2 emissions for each citizen (through 

a daily carbon digest).
3. Ensures the privacy of citizens data.
4. Integrates Explainable AI to make data and models 

understandable for citizens.

2. Design
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Figure 2. Explainability feature allows us to understand the 
weight given to each feature to label each class.
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Figure 3. CO2 emissions (left) and CO2 savings (right) of a 
user commuting with a diesel car, gasoline car and a bus.
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Figure 1. Pipeline of the full proposed methodology. 
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