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A B S T R A C T

Cities worldwide have agreed on ambitious goals regarding carbon neutrality. To do so, policymakers
seek ways to foster smarter and cleaner transportation solutions. However, citizens lack awareness of their
carbon footprint and of greener mobility alternatives such as public transports. With this, three main
challenges emerge: (i) increase users’ awareness regarding their carbon footprint, (ii) provide personalized
recommendations and incentives for using sustainable transportation alternatives and, (iii) guarantee that any
personal data collected from the user is kept private.

This paper addresses these challenges by proposing a new methodology. Created under the FranchetAI
project, the methodology combines federated Artificial Intelligence (AI) and Greenhouse Gas (GHG) estimation
models to calculate the carbon footprint of users when choosing different transportation modes (e.g., foot, car,
bus). Through a mobile application that keeps the privacy of users’ personal information, the project aims at
providing detailed reports to inform citizens about their impact on the environment, and an incentive program
to promote the usage of more sustainable mobility alternatives.
1. Introduction

According to the World Economic Forum (WEF) [1], ‘‘mobility is
a fundamental human need and an essential enabler of prosperity, but
the current mobility paradigm is not sustainable’’. Quoting WEF, car
travel causes millions of deaths every year, with a significant amount
of Greenhouse Gas (GHG) emissions, and traffic congestion causing
heavy financial loss. The European Commission also acknowledges that
transportation is the leading cause of air pollution in cities [2]. With
this, cities worldwide have agreed on ambitious goals towards 2030
regarding GHG emissions and carbon neutrality. Given this agenda, the
global mobility system is in its early stage of massive transformation.
Namely, policymakers are seeking ways to foster smarter, cleaner, and
more inclusive mobility. For this to be possible, we argue that one must
consider three main challenges.

Carbon footprint awareness. Citizens are not aware of their carbon
footprint when using different transportation modes (e.g., walking,
bicycle, motorcycle, car, bus). Mobility patterns should be collected and
leveraged to provide citizens with information about their impact on
the environment.

∗ Corresponding author.
E-mail address: claudia.v.brito@inesctec.pt (C. Brito).

Sustainable mobility. Cities are unable to implement greener strate-
gies for active and shared mobility due to public transportation’s low
attractiveness. Citizens should be provided with personalized recom-
mendations and incentives for using this type of transport.

Data privacy. Citizens should be aware of how their data is collected
and used and, more importantly, that their personal information (e.g.,
location) is kept private. Without this, the adoption of applications and
services that target the two previous challenges will be limited.

To address all the challenges, this paper proposes a new methodol-
ogy, created under the FranchetAI project [3], that promotes personal-
ized and sustainable mobility behavior while preserving data privacy
and increasing user trustworthiness. FranchetAI’s methodology is built
on top of the following pillars: (i) Artificial Intelligence (AI) and GHG
estimation models to detect the type of transportation being used by a
given citizen, along with its corresponding carbon footprint; (ii) state-
of-the-art mechanisms that safeguard data collected from users’ mobile
devices by not sharing private/sensitive data with any external service
(e.g., cloud provider); (iii) compliance with European best practices in
usability, accessibility, and explainable AI to clarify in an understand-
able way how users’ data is being processed; and, finally, (iv) building
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up on the experience of gamification and habit changing to promote
ncentives (e.g., rewards, vouchers, among others) to encourage the

community to opt for sustainable mobility choices, as well as to create
more awareness about sustainability among citizens. As output, users
will be informed about their mobility choices’ carbon footprint through
carbon digest reports (daily and weekly) via a mobile application.

In more detail, AI models are used to determine the transportation
ode being used by each user. Models are firstly trained with the

open-source GeoLife dataset [4]. Then, these models are iteratively
etrained with Federated Learning (FL) on users’ mobile devices, using
ensor data (e.g., GPS/GNSS, accelerometer) collected through a mobile
pplication. Although collected data never leaves users’ premises, at
ach training iteration, the parameters (i.e., model’s gradients) are

broadcasted to a centralized external server. Since the collected data
nd these broadcasted parameters contain sensitive user information,
e rely on Differential Privacy (DP) to ensure the privacy of our

olution. DP introduces random noise to the users’ data and/or the
roadcasted parameters allowing the model to not remember the data
hat it was trained with, thus not leaking any personal information
hen being queried by third-party entities (e.g., municipalities and/or

ities).
Further, by using explainable AI during the training stages, the

methodology follows a user-centric approach to make data under-
standable to various stakeholders (i.e., commuters, municipalities, and
ransportation operators). Namely, it allows understanding the impact
f each data feature on the trained model and the inference result.

With the trained models one can then infer the type of transport for
each user and use the result as input for a GHG model that estimates
the carbon footprint of a given trip. This second model provides the
necessary information to create the carbon digest above-mentioned.

Initial results comparing Decision Trees, Random Forest, Logistic
Regression, and XGBoost algorithms, show the impact of different
features on the prediction of the user’s mode of transport. Namely, we
show that it is possible to obtain results with over 80% accuracy when
considering the distance and mean velocity of users’ trajectories. Such
results form the basis for training with more complex algorithms based
on neural networks.

The end goal of the proposed methodology and proof-of-concept
obile application is to engage commuters to take greener options

ia gamification mechanisms. This is achieved by first comparing indi-
idual reports with the averages of local and European communities,
s well as with the necessary targets to minimize climate change.
uch comparison is the basis to provide rewards/incentives via local

challenges promoted and funded by Non-Governmental Organizations
(NGOs), decision-makers, and businesses willing to invest in carbon
eduction. By nurturing sustainable travel behaviors and changing
ommuters’ habits, this methodology aims to contribute to the direct
eduction of CO2 emissions.

2. Literature review

Knowing how users interact on a daily basis with transportation
utilities allows understanding their impact on the environment. Solu-
tions targeting such a goal must be able to collect and determine what
modes of transportation are being used while pinpointing their carbon
footprint. This often requires collecting sensitive personal information
from devices, such as mobile phones [5]. Therefore, one must also
ensure that users’ data is not disclosed to unwanted third-parties.
With this, state-of-the-art solutions can be decomposed into three main
subgroups: (i) mobility patterns and transportation mode, (ii) carbon
ootprint assessment, and (iii) federated learning for mobility.

2.1. Mobility patterns and transportation modes

Mobility pattern studies typically focus on how urban transportation
s used by citizens and how it might be enhanced to better serve their
2

needs and those of communities. Data collected from several sources
(e.g., GPS traces, weather conditions, traffic status) can be leveraged to
deliver solutions with different purposes [6].

Currently, mobility patterns are classified into two main types: pre-
diction and generation. Regarding mobility pattern prediction, studies
have focused on:

Next-location prediction. It aims at understanding the future locations
of users based on their previous behavior and historical mobility data.
Such information can be beneficial for improving public health, reduc-
ing traffic congestion, and providing better travel recommendations.
Additionally, it can help urban and public transportation planning,
as cities can leverage this information to upgrade their road systems,
urban infrastructure, and public transportation systems [5,7].

Crowd flow prediction. It assists cities in pinpointing areas of possible
traffic congestion and infrastructural improvement based on crowd
ehavior. Once more, these studies are based directly on users’ infor-
ation and how they move around cities. However, they leverage the

low of the crowd itself and do not intend to predict an individual’s
ext geographical position [5,7].

Mobility pattern generation studies also follow two different ap-
proaches:

Trajectory generation. This approach is based on individual GPS traces
and trajectories, and the goal is to generate synthetic trajectories that
follow distinct traveled distances and predictable human mobility pat-
terns. The generation of these trajectories may aid in urban planning
and avoids collecting citizens’ geographical positions [5,8].

Flow generation. Based on the exact location of users, this approach
gathers crowd flow information for a specific geographical region.

his is a crucial process for transport planning and epidemic spread
atterns [5,8].

The prediction and classification of mobility patterns can also be
leveraged for defining the transportation mode of users. For instance,
recent studies have used GPS traces for transportation-mode detec-
tion, classification, and prediction. These studies have shown high
confidence in defining several classes of transportation (e.g., walk,
run, bike, car, bus, train) by using Machine and Deep Learning algo-
rithms (ML/DL) [9–11]. Other solutions explore the use of multiple
sensors to detect transportation modes alongside the GPS traces (i.e.,
accelerometers, gyroscopes, and/or magnetometers).

Further, to improve the accuracy of these models, one can rely on
dditional information from public transportation networks and urban
nfrastructure (e.g., roads, streets, highways, etc.). The interplay of
hese new variables allows enhancing the output of these prediction
nd classification models [9].

2.2. Carbon footprint assessment

Calculating and inferring the carbon footprint of an individual user
is complex as it requires the collection of several data points and
integration of distinct models [12].

Life Cycle Assessment (LCA) models allow the calculation of the
arbon footprints for the entire life cycle of a specific transportation
ode, from the manufacturing of the vehicle to its usage and mainte-

nance and, finally, to its disposal (cradle-to-grave model). Such models
provide a holistic view of vehicles’ full life cycle and their impact on
the environment [13,14].

On the other hand, the Well-to-Wheel (WtW) concept provides an
alternative LCA model that focuses only on transport fuels and ve-
hicles’ usage. Well-to-wheel differs from cradle-to-grave, as it does not
consider energy and emissions involved in building facilities and the
vehicles, nor end-of-life aspects of the latter. The model analysis is often
broken down into two stages entitled well-to-tank and tank-to-wheel.
The first stage, known as upstream stage, incorporates fuel production,
processing, and delivery, while the downstream stage deals with vehicle
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operation. The WtW analysis is commonly used to assess total energy
consumption or the energy conversion efficiency and emissions impact
of different transport modes [15]. However, when used alone, these

odels are not sufficient to estimate a specific user’s daily carbon
ootprint.

By knowing the transportation mode being used by a given user,
nd by combining information about the user’s trajectory (e.g., distance
raveled, mean velocity, vehicle class, fuel type) with an LCA model,
ne can infer the carbon footprint of a commuter [16–18].

Alternatively, researchers are using ML and DL models to automate
the estimation of GHG emissions. These models have achieved high
accuracy rates and have been able to infer the carbon footprint of a user
based solely on the transportation mode and traveled distance [19].

2.3. Federated learning for mobility

FL is a paradigm that allows ML models to be trained over dis-
ributed data without sharing it with third-party entities [20]. FL has

been used in several domains such as healthcare, finance, and trans-
portation. Specifically, in the transportation domain, FL has recently
been used to train models that can predict the transportation mode of
a user based on GPS traces [21,22].

While FL is based on the assumption that no user data is outsourced
o third-party infrastructures, most algorithms do not contemplate ma-
icious attacks that intend to infer sensitive data from the parameters
r the trained model. To tackle such a challenge, privacy-preserving
L has emerged. Recent algorithms employ DP as a privacy mea-
ure to ensure that sensitive data and gradients are not disclosed to
hird-party entities [23]. Alongside, Multi-Party Computation (MPC)

algorithms, namely secure aggregation, is an alternative algorithm
applied to FL [24]. While DP trades off accuracy for privacy, MPC
trades off performance for privacy.

Summary. In general, there is not yet a solution that comprises all the
previous three main topics in a holistic way. The FranchetAI method-
ology aims to address this challenge. Specifically, in this paper, we
focus on the detection of the transportation modes and the estimation
of the carbon footprint of each individual citizen while promoting
the preservation of users’ data privacy. In contrast to the work pro-
osed in this paper, current FL solutions leverage federated algorithms
ithout the additional privacy measures above-mentioned. Moreover,

hese approaches do not extend further from the transportation mode
lassification and do not explore the calculation of GHG emissions.

3. Methodology

FranchetAI provides a digital rewarding solution for people opting
or sustainable mobility options (e.g., public transportation, electric
ehicles), ensuring transparency and trustworthiness between the user
nd the different stakeholders creating the incentives. Such a solution
ims to educate citizens about their carbon footprint while offering
raveling alternatives and rewards for traveling more sustainably. The
ethodology proposed by FranchetAI and depicted in Fig. 1 has the

end goal of reducing CO2 emissions. To achieve this, one can split
the methodology into several steps. First, a centralized server allows
deploying a web platform that processes and visualizes, for instance,
raffic flow, road topologies, and public transit networks (Fig. 1- 1 ).

Second, a mobile application is deployed on each user’s mobile device
Fig. 1- 2 ). This application collects itineraries from GPS, accelerome-

ter, and gyroscope (Fig. 1- 3 ). It also allows users to input additional
nfo on vehicle usage and parameters (e.g., year, class, fuel type)
Fig. 1- 4 ).

Information collected by the mobile app and the web platform
orks as an input to a transportation model. This model, based on AI,

infers users’ transportation mode by using personal information from
heir trips and public information from public transit networks (Fig. 1-
5 ). The collected user data is also used for retraining the model to
3

f

improve its accuracy. This is done in a privacy-preserving manner by
resorting to federated learning and guaranteeing that private users’ data
remain on their premises (i.e., their mobile devices).

The output of the previous model’s inference is leveraged by an
LCA model that estimates GHG emissions (Fig. 1- 6 ) and generates
daily and weekly carbon digest reports (Fig. 1- 7 ). The confidence of
this estimation depends on the users’ pre-validation of the output of the
transportation mode model. Finally, a sustainability model that receives
as input the GHG estimation, intends to recommend alternative and
more sustainable transportation solutions (Fig. 1- 8 ). This final model
is based on the trajectories of each user’s trip and on the currently
available transportation solutions that lead to fewer or no emissions.
To increase the engagement of users with such an application and with
greener alternatives, the FranchetAI mobile app promotes incentives
from local community businesses, NGOs, and cities (Fig. 1- 9 ). Finally,
ranchetAI mobile application already has a proof-of-concept layout
here it is possible to have a first glimpse of the proposed carbon
igest.

Next, we further detail the transportation and emissions models,
along with the concepts and tools underpinning these. Also, in Sec-
tion 4.3 we show that these can achieve high accuracy, even when only
considering users’ data as input (i.e, without additional sources such as
traffic congestion, and transport networks).

3.1. AI models

Our AI approach is decoupled into two main stages. First, we define
the training dataset and how data is preprocessed. Then, we choose
the ML models and DL architectures to train with the previous dataset,
while defining also the FL framework and explainable tools to use.

Before diving into these stages, we briefly explain the common
orkflow of an FL system and how it can be used to train models on

op of sensitive data. Further, we overview the concepts of differential
rivacy and explainable AI.

3.1.1. Federated learning
Following the enormous amounts of collected data from different

ources, ML has become the de facto solution for analyzing and ex-
racting insights from it. Nonetheless, new regulations (e.g., GDPR)
mpose new approaches for analyzing data that may contain sensitive
nformation.

FL has emerged as a new ML paradigm targeting Non-Independent
and Identically Distributed (Non-IID) data [25,26], typically generated
on the edge, local servers, and mobile devices. Specifically, FL is a type
of distributed ML in which models are trained with data from different
users, but sensitive information never leaves each user’s premises.

In this setting (see Fig. 2), a centralized server has an initial trained
odel 𝑀𝑖 and broadcasts 𝑀𝑖 to every user (Fig. 2- 1 ). Typically, 𝑀𝑖 is

trained on previously collected, open-source, or private data, resulting
in a collection of parameters and hyperparameters. On the user side,
the device trains the model based on the user’s data (Fig. 2- 2 ).

At each iteration, the centralized server asks 𝑁 users for their
ew model parameters (Fig. 2- 3 ). Each user can define whether to

participate or not in a given round and similarly, the centralized server
can decline the parameters broadcasted from the decentralized users
(Fig. 2- 4 ). At the end of this cycle, the server calculates the average
of all obtained parameters (Fig. 2- 5 ) and broadcasts new parameters
to every user, which updates locally its own model (Fig. 2- 6 ) [25,26].

3.1.2. Differential privacy
To further strengthen data privacy guarantees, FL may resort to MPC

or DP as discussed in Section 2.3. In this work, we focus on the latter.
The intuition behind DP relies on the fact that changing any indi-

idual point on the input data will not change the query result but
ill limit the attacker’s capabilities for deducing private information

rom data with high confidence [23]. To this end, DP anonymizes the
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Fig. 1. Pipeline of the FranchetAI’s methodology.
Fig. 2. FL protocol stages.

private information by introducing randomness or noise in the original
data [23].

While the addition of noise to sensitive training data increases
privacy-preserving guarantees, it also increases the models’ error rate.
In this sense, the trade-off between privacy and accuracy is a crucial
aspect to consider when using DP [27]. To reduce the error rate,
one can apply optimizations such as adaptive clipping [28], which
continuously adapts the amount of noise introduced in each individual
training sample.

In an FL setting, DP can be applied directly to users’ data, or the
parameters being broadcasted across users and the centralized server.
In both cases, the goal is to guarantee that no private information is
leaked when the trained model is queried by third-party entities (e.g.,
cities, municipalities).
4

3.1.3. Explainable AI
Explainable AI (XAI) is a growing field in the AI community that

promotes the transparency, interpretability, and trustworthiness of
complex AI models. It aims to make models more understandable and
interpretable for humans, and is built on top of three main goals [29]:

• Model Interpretation: The internals of the AI models are ana-
lyzed to understand how these calculate their decision outputs.

• Model Visualization: AI models are transformed into visual rep-
resentations to understand their architectures and visualize the
importance of each feature on the inference’s result.

• Model Explanation: The inputs of the model are scored and
sorted to understand their relevance to the trained model.

Currently, libraries, such as SHAP, Intel’s Explainable AI Tools,
or Google Cloud’s XAI [30–32], allow the seamless integration of
explainability tools during the training and inference stages of AI
models.

In summary, XAI is a crucial component of the proposed method-
ology because it allows users to understand which data is leveraged
for training the transportation model and how the final predictions are
calculated.

3.1.4. Data preprocessing
To train the transportation model, we chose the GeoLife GPS Tra-

jectories dataset [4]. It consists of 17,621 GPS trajectory data points
from 178 users, each including latitude, longitude, and altitude in-
formation. Additionally, data points are labeled with different modes
of transportation (classes). In this work, we focus on five classes,
including vehicles (comprising individuals’ cars and taxis), motorcycles,
bikes, buses, and feet (comprising walking and running), which can be
seamlessly changed if one wants to increase the number of classes.
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Fig. 3. Layout of the proposed FL system.

The preprocessing of input raw data is based on state-of-the-art
methods and is used to calculate the velocity, acceleration, and distance
of the trajectory for each user. The distance between two points is cal-
culated using Geopy, which uses the geodesic distance to this end [33].
The velocity is calculated by dividing the distance between two points
by the time taken to travel between these. Finally, the acceleration
is calculated by dividing the velocity across two points with the time
taken to travel between these.

Input data is then split into training and testing sets. The training set
is used to train the model, whereas the testing set is used to evaluate the
model. The split is performed using the train_test_split function
from the SciKit-Learn library [34], using a 70/30 ratio, where 70% of
the data is used for training and 30% for testing.

The preprocessed dataset is used to train a first version of the model
in a centralized setting, which is then retrained with the data collected
on the mobile device of each user by resorting to FL. The information
collected at each mobile device is identical to the one reported in the
GeoLife dataset and goes through the same preprocessing method.

3.1.5. Model development
Different ML and DL models were chosen to better understand their

trade-offs between accuracy and execution time. For the ML models,
we resorted to Random Forest, Decision Trees, Logistic Regression, and
XGBoost, which were provided by the SciKit-Learn library [34]. The
DL models were built based on the assumption that training data is
provided through CSVs stored in a time-series database. As so, the
models were developed with dense and long-short term layers. The
literature supports the use of these architectures for similar time-series
use cases [21]. Finally, these models were implemented on top of
Tensorflow [35].

As explained previously and depicted in Fig. 3, all these models
were firstly trained in a centralized fashion (i.e., in a centralized server
with the Geolife’s dataset) and then, retrained in a federated setting
(i.e., across users’ mobile devices with local data). For the latter setting,
we started by using the PySyft framework [36,37]. However, this
framework lacks support for mobile settings, which led to exploring two
other alternatives, namely Tensorflow Lite [35] and Flower [38]. We
opted for the latter since it supports straightforward integration with
both the ML and DL models, and corresponding frameworks, used in the
paper. Also, Flower allows federated training both in mobile settings
and across data silos. This feature is important if cities provide access
to other information, such as road topology and traffic congestion, that
can be used along with users’ data to improve the final models.

Flower also provides several averaging algorithms which com-
prise DP alternatives. These can be used to improve our solution’s
privacy-preserving guarantees and trustworthiness. Namely, we used
the DP-FedAvg strategy to introduce random noise on the users’ data,
mitigating the leakage of their personal information (e.g., location).

Finally, we used the SHAP library [30] to explain the models
through Shapley values [39], which provide a way to measure the
contribution of each feature to the model’s final prediction.
5

3.2. GHG model

The methodology adopted for estimating Greenhouse Gases (GHG)
and air pollution emissions is based on the tank-to-wheel stage of WtW
LCA model, which only considers the operation of the vehicle [40].

In more detail, emissions are estimated based on the CORe INven-
tory AIR emissions (CORINAIR) system, i.e., the method approved by
the European Environment Agency (EEA). CORINAIR adheres to the
Intergovernmental Panel for Climate Change (IPCC) guidelines [41]
used globally by environmental protection agencies for national and
regional evaluations.

According to the IPCC Guidelines for greenhouse gasses, a compiler
from the CORINAIR system builds a decision tree to select the appro-
priate methodology with different complexities and data requirements.
As input to the compiler, we apply the Tier 3 methodology from
EMEP/EEA emission inventory guidebook [42]. Moreover, the GHG
estimations are based on the ultimate CO2 emissions, which result from
different processes (i.e., combustion of fuel, combustion of lubricant oil,
and addition of carbon-containing additives in the exhaust). This results
in Eq. (1):

𝐸𝑖𝑘 = 𝑒𝑖𝑘(𝑣) ⋅ 𝑎𝑘, (1)

where 𝐸𝑖𝑘 is the exhaust emissions of pollutant 𝑖 induced by a vehicle
technology 𝑘 (in grams); 𝑒𝑖𝑘 is the emission factor as a function of
the vehicle driving speed (in grams per kilometer); 𝑎𝑘 is the transport
activity in vehicle kilometers traveled for vehicle technology 𝑘.

The emissions are calculated individually for each user of the
FranchetAI mobile application by considering the average driving speed
of the road links that constitute an individual trip. The previous AI
model(s) provides the information on traffic data (transportation mode,
trip route, distance, and traveling speed) necessary to calculate clients’
emissions from traffic activity. Also, information on vehicle technology
is required, i.e., the Euro Standard information, accessed by considering
the age of the vehicle. Therefore, a user is asked to give this detailed
information; otherwise, a default technology is used (Euro 4).

4. Results

In this section, we highlight the main results of the paper. First,
we assess the accuracy and training times of different AI models when
trained with the GeoLife dataset in a centralized setting. Then, we
showcase the viability of using our DL model within an FL setup. Then
we present an output example for our emissions model, and finally,
we overview an initial mock-up and layout of the FranchetAI mobile
application.

4.1. AI models

The first tests with the GeoLife dataset helped limit and create
general classes for the transportation modes. By limiting the number of
classes, we were able to reduce the tree length and improve the results
of Random Forests (RF) and Decision Trees (DT) models by around 5%,
reaching an accuracy of 81% (as depicted in Fig. 4) in less than 3 min
of training.

Plus, the implementation of Logistic Regression (LG) with and with-
out cross-validation (LGCV) and XGBoost have shown lower accuracy
results, namely 45% for both the logistic algorithms and around 70%
for XGBoost. Regarding training times, the convergence of the algo-
rithms took 1 min and 14.7 h, for LG and LGCV respectively, and 1.4 h
for XGBoost.

Moreover, the developed DL model based on dense and long-short-
term memory layers (NN) showed lower accuracy when compared to
RF and DT. Yet, its implementation was able to obtain an accuracy of
75% with an execution time of 5 min.

These tests also allowed perceiving the impact of different input
features. Namely, the first batch of tests was performed with the
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Fig. 4. Accuracy results for the tested models.

Fig. 5. Example of the current explainability outcome.

traveled distance, the mean velocity, and the mean acceleration in
mind. However, the mean acceleration did not impact positively or
negatively the accuracy of the trained models.

To assess the viability of using an FL setup, we sharded the test
dataset into ten shards, each attributed to a distinct user’s device
(mobile application). These experiments focused only on the NN model.
Initial results are promising, showing that the model can label the
remaining trajectories (i.e., test dataset) with similar accuracy. Also, the
retraining of the model on the test dataset was performed in 5 rounds,
in which the users’ devices trained for 5 iterations and broadcasted
their parameters to the centralized server. On the user’s side, the
differential privacy strategy used a constant value of clipping of 0.1
and a noise multiplier of 0.4. In the end, a global model was saved
containing the aggregation of all the parameters and kept the initial
accuracy of 75%.

The explainability tool allowed us to understand the weight given
to each feature per class (Fig. 5). With classes (e.g., car, foot, bus) being
the output (of the model), the mean velocity and the distance of each
trajectory are the features of the model. For instance, for class 4, the
velocity feature is more relevant than distance.

Although the evaluated solution presents a viable option for mobile
settings, other features such as instant velocity and accelerometer
and/or gyroscope information, which can be collected through the
mobile application, should be made available to train new models
and check whether these can improve training speed and the model’s
accuracy.

4.2. GHG estimation

Our current emissions model requires the following information: (i)
mean velocity of the trajectory; (ii) type of fuel of the car; (iii) category
of the vehicle (i.e., passenger, bus, heavy duty and, motorcycle); (iv)
the total distance of the trip; and (v) the year of the vehicle. The year
and category are further used to define the Euro Standard. Still, when
the user does not disclose such information, the GHG emissions are
estimated based on Euro 4, while the previously trained AI models
define the vehicle category.

Fig. 6 presents an example of the usage of our emissions model.
For instance, for a user commuting for 30 min at 30 km/h, totaling
a distance of 15 Km, one may analyze the CO induced by different
6

2

Fig. 6. CO2 emissions of a user commuting with a diesel car, gasoline car and bus.

Fig. 7. CO2 savings of a user commuting with a bus instead of using a car fueled by
diesel or gasoline.

vehicle modes (e.g., diesel/gasoline car or bus) in kilograms per vehicle.
Also, by assuming that an urban bus will have an occupancy of 20
people, the impact of using such a more environmentally friendly
vehicle is presented in Fig. 7.

4.3. FranchetAI mobile prototype

As previously mentioned, the FranchetAI mobile application (see
Fig. 8) aims to offer a digital rewarding mechanism for users opting for
more sustainable mobility solutions. With direct access to a daily and
weekly carbon digest, the citizens become aware of their own carbon
footprint and how they compare to others from the same community
or globally. While the application collects the needed information for
the previous models to work, this data is stored locally and leveraged
only inside the users’ mobile devices.

Furthermore, FranchetAI helps increase the users’ awareness of how
their transportation choices impact the environment while rewarding
them for good behavior through incentives provided, for example, by
local stores and services. Therefore, FranchetAI plays a crucial role in
achieving the Sustainable Development Goals regarding climate change
and helps build cities’ economies while promoting local businesses. This
prototype must be fully implemented and deployed into the pilot stage
for a complete proof-of-concept solution. With this, the focus will be
on the young adult generations, who are typically more prompt to test
new environment-aware solutions. This stage will also allow us to try
and improve the feasibility of such a novel solution.

5. Conclusion

The proposed methodology leverages best practices for engaging
citizens in taking more conscious environmental decisions while ensur-
ing their right to privacy. Specifically, the solution uses AI models to
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Fig. 8. FranchetAI mobile application.

detect the transportation modes of users while combining such infor-
mation with a GHG emissions model to provide recommendations and
incentives to change users’ habits. Importantly, users have complete
control of their data, knowing which data is used for locally inferring
the system’s models and which is used for training new models. Further,
by following a federated learning setting and security protocols, users’
sensitive information is never disclosed to unwanted third-parties.

Regarding future work, the methodology will be validated within
real-world scenarios. Data from past and ongoing initiatives (namely
other R&D projects) is being used as well as open data and third-party
platforms to ensure the solution is as off-the-shelf as possible (although
local context and data will help personalize it to the target commu-
nities). Also, we want to evaluate other strategies for the federated
system and understand the trade-off between accuracy and privacy
when adding differential privacy.
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