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1 Use Case - Deployment Setting
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Figure 1: An example where a consortium of entities (e.g., a group of Research Hospitals) have access to a
large genomic dataset but lack the processing and storage power to analyze it. In this scenario, the entities
can offload the processing and storage of the data to a third-party infrastructure (e.g., a Cloud Computing
service) and execute the genomic computation remotely.

2 Background

2.1 Genome
The genome refers to the entire genetic material of a living organism, contained within DNA and shared
across all cells. In humans, the DNA sequence is composed of nearly 3.1x109 base pairs. On average, between
each human, the genome presents a variation of 4x106 base pairs. These differences are commonly called
Single Nucleotide Polymorphism, or SNP for short. Based on the reference and alternative alleles from the
two copies of each chromosome, SNPs are often depicted in three configurations based on the alleles: 1) aa:
reference-homozygous, 2) aA: heterozygous, and 3) AA: alternative-homozygous. SNPs can be detected with
techniques like SNP arrays or genome sequencing [2].

2.2 The Genomic Pipeline
Genomic data processing follows a typical pipeline (see Figure 2) that can be divided into three main stages:
i) data collection, ii) data analysis, and iii) data sharing.
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Figure 2: A genomic processing pipeline representing the several steps of the genomic analysis. From the
collection of the genomic data to its storage, analysis, and public release. It also represents the several stages
where data is most vulnerable 1 - 3 .

Data Collection. In this stage, the tissue samples are collected from the patient and stored in a biobank.
The samples are then processed and analyzed to obtain the genomic data that will be stored in the Biocenter1
or at third-party (e.g., cloud computing infrastructures) premises according to the imposed regulations over
such data 1 .

Data Analysis. Data is analyzed to derive useful information. This stage is particularly vulnerable to
attacks since the data is usually analyzed in plaintext, which means data is fully open to malicious users
while being processed 2 .

Data Sharing. In this stage, the data is shared with the patient or the healthcare provider. This stage
is vulnerable since data is often shared in an open format and already provides the association between the
patient identity and the genetic information 3 .

The existence of sensitive data in a plaintext format at different steps of the pipeline makes it particularly
vulnerable to different types of attacks. We now define these vulnerabilities and address the most common
attacks that can be performed in the different stages.

2.2.1 Attacks on the Genomic Pipeline

In the deployment of a pipeline on a distributed environment, such as the one in Figure 2, one can expect the
attack surface to increase since sensitive data storage and processing are now deployed across multiple servers.
However, the key attacks possible in a distributed pipeline are similar to those in a centralized pipeline, where
data and computation are outsourced to third-party infrastructures. The three most common attacks are
Membership Inference, Re-identification, and Data Poisoning.

1. Membership Inference attacks intend to disclose the usage of a specific individual’s data in the
analysis. The attack is usually performed by an adversary with access to the data and the results.
The adversary then tries to infer which individuals were used in the analysis. This is usually done by
querying the analysis results for a specific individual and comparing those from other individuals. If
the results differ, the adversary can infer that the individual was not used in the analysis. Specifically,
Homer’s attack and its variations leverage the background information of the human genome that is
currently available in the public domain to query models regarding a specific individual [7, 13].

2. Re-identification attacks try to reveal the identities of the individuals whose data has been anonymized
and used in the analysis. Recent studies have shown that demographic information could be linked to
public genomic data and databases. Similarly, it was shown that this could be achieved by linking the
genomic data with genealogical databases [8].

1We define a Biocenter as any entity that gathers/collects genomic data (e.g., Hospitals, Medical Research Centers).

2



3. Data Poisoning occurs when malicious users want to poison the data in order to produce false results
or contaminate the final analysis, usually by adding false data. Data poisoning in the context of
genomic data and, more specifically, GWAS, can lead to false assumptions and associations that can
create bias and release false insights [10].

3 Key Technologies

3.1 Apache Spark and Glow.
Apache Spark is a distributed framework that redefines the programming model of MapReduce to run it in
memory [15]. It can be deployed in a cluster of servers and provides a hierarchical architecture composed
of a master and several workers; see Figure 1 in the main article. The master node presents two main
components: the Spark Context and the Spark driver. Specifically, in this architecture: i) the master node
receives the tasks (e.g., GWASes, statistical tests) from the client and creates a Spark Context, which then
broadcasts the tasks to the workers; ii) the workers perform the defined computations and share intermediate
results among them; iii) when the workers finish their computation, the results are sent back to the master,
which aggregates all the results and sends them to the client. The workers to which the master sends tasks
are defined by a resource manager who evaluates the available resources and chooses the best possible cluster
setting for a specific task [15]. Spark provides a native Machine Learning library (MLlib), a graph library
(GraphX), a streaming library (Spark Streaming), and a library for SQL queries (SQL and DataFrames) [12].
The modularity of Spark allows easy integration with several third-party applications. Solutions such as
TensorflowOnSpark [14], Glow [6], or ADAM [1] have been built on top of Spark.

Glow offers a solution for performing GWAS at scale. It supports different data formats, including VCF,
BGEN, and Plink, by internally converting them into Spark’s DataFrames. It includes regression-based
algorithms, statistical tests, and population stratification methods to perform GWAS easily [6].

3.2 Intel SGX
Intel SGX provides a set of instructions that offer hardware-based trusted and protected memory regions
called enclaves. Code and data residing in enclaves are isolated from the host system, increasing the security
of their content, which can be handled in plaintext [9, 11]. However, sensitive data and computational
outputs transferred to and from the enclave must be encrypted, as these may be handled by untrusted
host software. First, the input (ECalls) and output (OCalls) enclave operations often lead to a performance
overhead [4, 16]. Then, SGX’s enclave has a limited memory capacity (128MB per CPU), which may result in
memory swapping that penalizes performance [3]. Even though the second generation of SGX has improved
the size of the protected memory region, the Enclave Page Cache (EPC) is still defined as 128MB per CPU [5].
Memory swapping occurs when such a limitation is met, which is a performance-costly mechanism [4].

Therefore, in order to maximize performance, solutions that strike a balance between I/O operations and
the volume of data handled by the enclave are required.
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