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Abstract 

Cities worldwide have agreed on ambitious goals regarding carbon neutrality; thus, smart cities face challenges regarding active 
and shared mobility due to public transportation’s low attractiveness and lack of real-time multimodal information. These issues 
have led to a lack of data on the community’s mobility choices, traffic commuters’ carbon footprint and corresponding low 
motivation to change habits. Besides, many consumers are reluctant to use some software tools due to the lack of data privacy 
guarantee. This paper presents a methodology developed in the FranchetAI project that addresses these issues by providing 
distributed privacy-preserving machine learning models that identify travel behaviour patterns and respective GHG emissions to 
recommend alternative options. Also, the paper presents the developed FranchetAI mobile prototype. 
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1. Introduction 

According to the World Economic Forum (WEF, 2022), “mobility is a fundamental human need, and an essential 
enabler of prosperity, but the current mobility paradigm is not sustainable”. Quoting WEF, car travel causes millions 
of deaths every year, with a significant amount of Greenhouse Gas (GHG) emissions being transport-related and 
congestions causing heavy financial losses. The global mobility system is in the early stages of massive transformation 
worldwide, as novel technologies enable innovative related businesses. Moreover, policymakers seek ways to foster 
mobility that becomes smarter, cleaner, and more inclusive. The European Commission also acknowledges that 
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transport is the leading cause of air pollution in cities (EC, 2016). Cities worldwide have agreed on ambitious goals 
towards 2030 regarding GHG emissions and carbon neutrality. Based on that ambitious roadmap, smart cities face 
challenges regarding active and shared mobility due to public transportation’s low attractiveness and lack of real-time 
multimodal information for citizens (that integrates public transport). These struggles have increased the community’s 
lack of awareness of their mobility choices’ carbon footprint and low motivation to change habits. 

Additionally, according to Cisco’s ‘Consumer Privacy Survey’ (CISCO, 2020), almost half of the consumers (48%) 
feel they do not have control over their data. Misuse or abuse of personal data is the top reason consumers lose trust 
in a company. 

This study proposes a methodology created under the FranchetAI project (FranchetAI, 2022) to develop a solution 
that promotes personalised, sustainable travel behaviours while preserving data privacy and user trustworthiness. 
FranchetAI built the methodology on top of the following pillars: (i) state-of-the-art mechanisms to safeguard data 
collected from smartphones by not sharing private/sensitive data with any cloud service; (ii) compliance with European 
best practices in usability, accessibility and explainable AI to clarify in an understandable way how the data is being 
processed and how the results are achieved, and, finally, (iii) building up the experience on gamification and habit 
changing to promote incentives (rewards, vouchers, among others) to encourage the community to opt for sustainable 
trip choices as well as to create more awareness amongst them. 

Based on this methodology, the final solution creates awareness of the saved emissions with periodic “Carbon 
digest” reports (daily and weekly) via a mobile app that showcases the individual environmental impact of their 
transportation decisions. The application also recommends sustainable alternatives that produce fewer or no emissions 
based on the available transit options in a city. 

Leveraging explainable AI tools, plus usable and accessible interfaces, the methodology follows a user-centric 
approach to make data understandable by the various stakeholders (commuters, municipalities, transportation 
operators). Artificial Intelligence (AI) models process the data presented, which understand different mobility options 
and their environmental impact. 

A different model responsible for GHG emissions estimates the users’ carbon footprint. For instance, the Machine 
Learning (ML) model that predicts the user modal choice considers standard sensor data from smartphone devices 
(GPS/GNSS, accelerometer, etc.). It comes (off-the-shelf) trained to identify different types of transportation (car, 
bicycle, walking, etc.). To determine if a user is taking a specific bus or train route (or to recommend one afterwards), 
the solution requires data on the public transit network in GTFS (GTFS, 2022) format to train its AI models on the 
routes and schedules. The application then engages commuters to take greener options via gamification mechanisms 
(by comparing individual reports with the averages of local and European communities, as well as with the necessary 
targets to avoid climate changes), but especially with rewards/incentives via local challenges promoted and funded by 
NGOs, decision-makers and businesses willing to invest in carbon reduction. By nurturing these sustainable travel 
behaviours and changing commuters’ habits, this methodology aims to contribute to CO2 emissions reduction directly. 

2. Methodology and main contributions 

The methodology was split into two objectives to offer an encompassing solution: the AI approach and the GHG 
approach. First, to automatically understand the user’s mobility patterns, we resort to Artificial Intelligence 
mechanisms, namely Federated Learning (AI). Secondly, after defining the type of transportation chosen by the user, 
we need to infer its carbon footprint (GHG). 

With this, in the first step, we explain the need to use machine learning algorithms on top of mobility data and how 
we can focus on the privacy of the users’ data while highlighting important information from it. Moreover, we also 
acknowledge the need to have prior knowledge about several aspects of transportation methods to measure GHG 
emissions correctly. Fig. 1 exhibits the pipeline of the proposed methodology. 

2.1. AI Approach 

Following the enormous deluge of data, Machine Learning became the de facto solution to leverage large quantities 
of data and extract insights from it. Nonetheless, new regulations (e.g., GDPR) impose new approaches to analysing 
data that may contain sensitive information. Also, Federated Learning (FL) has been emerging when focusing on not 
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approach to make data understandable by the various stakeholders (commuters, municipalities, transportation 
operators). Artificial Intelligence (AI) models process the data presented, which understand different mobility options 
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Learning (ML) model that predicts the user modal choice considers standard sensor data from smartphone devices 
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independent and identically distributed (Non-IID) data (Bonawitz et al., 2019; Li et al., 2020). Such data is commonly 
generated on edge, local and mobile devices. 

 
 

Fig. 1.  The pipeline of the proposed methodology. 

In brief, FL is a type of distributed machine learning where the data never leaves the data source. Sensitive data 
from different users can be leveraged to train a privacy-preserving model. In this setting, a centralised server has the 
initial trained model 𝑀𝑀𝑖𝑖  and broadcasts 𝑀𝑀𝑖𝑖 to every user. This trained machine learning model is a collection of 
parameters and hyperparameters calculated based on the training data. Typically, 𝑀𝑀𝑖𝑖 is trained on previously collected 
data, open-sourced or private data. On the user side, the user device trains the model on the user’s data. At each 
iteration, the centralised server asks N users for their new model parameters and calculates the average of all the 
obtained parameters. Each user can define if they will participate in the round or not. Similarly, the centralised server 
can decline the parameters broadcasted from the decentralised users. At the end of this cycle, the server informs the 
new parameters of every user, updating their local model (Bonawitz et al., 2019; Li et al., 2020). Also, one of the 
goals of FL is to preserve data privacy. To do so, FL resorts to differential privacy, adding an amount of noise to the 
user’s data, guaranteeing that individual data cannot be disclosed (Wei et al., 2021). So, our AI approach is decoupled 
into two stages. First, we define the datasets to train our chosen models and deep learning architectures locally, and 
then we define the preferred framework for developing our federated system. 
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Fig. 2.  Representation of the proposed federated system and representative visualisation of the output. 

For such a development, we chose the GeoLife GPS Trajectories dataset (Zheng et al., 2011). It comprises GPS 
trajectory data from 178 users with latitude, longitude and altitude, containing 17,621 trajectories. This data defines 
which information we need the users to collect. Then, by working with such data, we describe the trajectory’s velocity, 
acceleration, and distance as the main features to be calculated and used as the input of our models. Moreover, such a 
dataset encompasses several modes of transportation, and we focused on fewer transportation modes, e.g., car, 
motorcycle, bike, bus, or foot, to improve the accuracy of the models. This approach leads to the model more 
accurately labelling the transportation mode used by each user. 

For the initial models, we used the Random Forest (𝑛𝑛 = 15, number of estimators) and Decision Trees (with a 
minimum of 2 tree splits), resorting to the library SciKit-Learn (Scikit-Learn, 2022). After using standard machine 
learning models, other algorithms, with emphasis on deep learning, were used. This was due to the federated learning 
system (further explained below). These models were built based on the assumption that the initial data will be loaded 
as CSVs and a time-series database. To this end, the models were developed with dense and long-short term layers. 
The literature supports the use of these architectures for similar use cases. 
We focus our efforts on using state-of-the-art frameworks to offer the proposed encompassing solution. In the first 
stage, we tested our solution on top of PySyft (Ryffel et. al, 2018; Ziller et. al, 2021). However, due to the launch of 
its new version, it was essential to understand the changes and how they would influence the following development. 
After a first evaluation, it was possible to understand the lack of support from the new version to mobile settings. As 
such, there was a need to evaluate similar solutions, namely Flower (Beutel et al., 2020; Flower, 2022) and Tensorflow 
Lite (Tensorflow, 2022). While developing the first deep learning models, Tensorflow was the chosen framework. As 
such, both federated systems were valid alternatives. Nonetheless, even though the integration with the mobile APP 
still occurs, resorting to the compilation abilities of Tensorflow Lite, Flower provides integration with several machine 
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learning frameworks. This solution allows the training of federated algorithms not only on mobile settings. After this 
first stage, it was possible to define a federated system seamlessly for other models and use cases focusing on sensitive 
data, e.g., data obtained from each municipality or city. Flower also provides several averaging algorithms which 
comprise differential privacy alternatives. This main feature improves the solution’s privacy-preserving goal and its 
trustworthiness. With this in mind, Fig. 2 represents the overall layout of the federated system. 

Moreover, we acknowledge the need to employ Explainable AI tools to let users understand how their data is used. 
To do so, we apply the SHAP framework. Such a framework visually explains which information is used to train the 
models. Since we limit the number of labels and data used for this training, this Explainability allows the users to 
understand which features impact the outcome/output of the model. 

2.2. GH Approach 

The methodology adopted for estimating Greenhouse Gases (GHG) and air pollution emissions and measuring 
their reduction is based on the “tank-to-wheel” Life-Cycle Assessment (LCA), thus, only considering the operation of 
the vehicle. The emissions are estimated based on the CORe INventory AIR emissions (CORINAIR) system, i.e. the 
method approved by the European Environment Agency (EEA) to assess emissions. CORINAIR adheres to the IPCC 
guidelines (IPCC, 2006), used globally by environmental protection agencies for national and regional evaluations. 
According to the IPCC Guidelines for greenhouse gasses, a compiler builds a decision tree to select the appropriate 
methodology with different complexities and data requirements. Therefore, we apply the Tier 3 methodology from 
EMEP/EEA (EMEP/EEA, 2019) (formerly called the EMEP CORINAIR emission inventory guidebook) by 
considering equation 1. Moreover, the GHG estimations are based on the ultimate CO2 emissions, which result from 
different processes (combustion of fuel; combustion of lubricant oil; and addition of carbon-containing additives in 
the exhaust). 

𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑖𝑖(𝑣𝑣) ∙ 𝑎𝑎𝑘𝑘    (1) 

where Eik is the exhaust emissions of pollutant i induced by a vehicle technology k (in grammes); eik is the emission 
factor as a function of the vehicle driving speed (in grammes per kilometre); ak is the transport activity in vehicle 
kilometres travelled (VKT) for vehicle technology 𝑘𝑘. The emissions are calculated individually for each client of the 
FranchetAI Mobile App by considering the average driving speed of the road links that constitute an individual trip. 
The previous AI approach provides information on traffic data (modal choice, trip route and distance and driving 
speed) necessary to calculate clients’ emissions from traffic activity. Also, information on vehicle technology is 
required, i.e. the Euro Standard information, accessed by taking into account the age of the vehicle. Therefore, a user 
is asked to give this detailed information; otherwise, a default technology is used (Euro 4). 

3. Results and Discussion 

3.1. AI Approach 

The focus of the first tests with the GeoLife dataset helped limit and create general labels for the transportation 
modes. We partitioned the initial dataset into test and train datasets, 30% and 70%, respectively. The first 70% of the 
dataset was used to train the model, while the remaining 30% was used to test it. Also, while limiting the used labels, 
we could diminish the tree length and improve the results of Random Forests and Decision Trees by around 5%, 
reaching an accuracy of 81% in less than 3 minutes of training. Moreover, the developed Deep Learning models, based 
on dense and long-short term memory layers, have yet to achieve similar results. Nonetheless, the results are identical 
to the previous ones, reaching an accuracy of 75% with a training run time of 5 minutes. Focusing on the current tests 
based on the proposed federated system, we followed a similar dataset definition. We further sharded the test dataset 
into ten shards to test the system with ten clients. Such initial results were promising, showing that the trained model 
can label the remaining trajectories with similar accuracy. With 1/10 of the dataset, each user can prepare a new local 
model and share its parameters with the centralised server. 
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 The Explainability feature allows us to understand the weight given to each feature to label each class (Fig. 3). 
With classes (e.g., car, foot, bus) being the output (of the model), the mean velocity and the distance of each trajectory 
are the features of the model. 

Although such a solution presents a viable option for mobile settings, the proposed models need yet to be 
comparable to others from the state-of-the-art. Further information could be leveraged to improve these models. Also, 
other data features can depend on what the mobile device collects on the user side. To this end, new tests should be 
made available, and new deep learning model architectures may be defined. 

 

 

Fig. 3.  Example of the current Explainability outcome. 

3.2. Example GHG Approach 

The emissions model currently proposed needs the following information: i) the mean velocity of the trajectory; ii) 
the type of fuel of the car; iii) the category of the vehicle (i.e., Passenger, Bus, Heavy Duty and, Motorcycle); iv) the 
total distance of the trip; v) the year of the vehicle. To calculate such emissions, we need the trajectory's velocity and 
total distance, together with the type of vehicle and its category. The year and category are further used to define the 
Euro Standard. Still, when the user does not disclose such information, the GHG emissions are estimated based on 
Euro 4, and the previously trained AI models define the vehicle category. 

 
 

(a) CO2 emissions of a user commuting with a diesel car, gasoline car 
and a bus. 

 

(b) CO2 savings of a user commuting with a diesel car, gasoline car 
and a bus. 

Fig. 4.  Example of the proposed solution for GHG emissions. 

Fig. 4 presents an example of the usage of our emissions model. For instance, for a user commuting for 30 min at 
30km/h, one may analyse the CO2 induced by different vehicle modes (diesel/gasoline car or bus) in kilograms per 
vehicle. Also, by assuming that an urban bus will have an occupancy of 20 people, the impact of using such a more 
environmentally friendly vehicle is presented. 
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3.3. FranchetAI Mobile Prototype 

The Cotoneaster franchetii inspires FranchetAI (see Fig. 5), a super plant acknowledged for filtering 20% more 
emissions (namely automobile air pollutants) than other shrubs. FranchetAI is a digital rewarding mechanism for 
people opting for sustainable mobility options (public transit, electric vehicles, and other light modes), ensuring 
transparency and trustworthiness between the user and the different stakeholders creating the incentives. Overall, such 
a solution aims to let users understand their carbon footprint while offering travelling alternatives and rewards for 
travelling more sustainably by changing their current habits. 

 

Fig. 5. FranchetAI Mobile App. 

To improve the models that classify the transportation modes and the emissions, a few attributes and parameters 
are sent to our server to retrain them. These do not reflect the user’s location or any other personal data that might 
have been shared with our application, specific to the model parameters. Hence, data is collected from a smartphone 
only with the user’s consent and is not shared with any cloud service. Besides, FranchetAI helps increase the users’ 
awareness of their transport environment impact choices while rewarding them when a “good behaviour” is made, 
provided by local stores and services. Therefore, FranchetAI plays a crucial role in achieving the SDGs regarding 
climate change and helps build cities’ economies while promoting local businesses. This prototype must be fully 
implemented and deployed into the pilot stage for a complete proof-of-concept solution. With this, the focus will be 
on the young adult generation, who are typically more prompt to test new environment-aware solutions. This stage 
will also allow us to try and improve the feasibility of such a novel solution. 

4. Conclusion 

This methodology leverages best practices for differentiating on privacy and engaging citizens. Specifically, it uses 
AI/ML models to classify personas based on user feedback collected in the mobile app and provide recommendations 
on routing options that produce fewer/no emissions. Also, the solution uses AI/ML models to detect the transportation 
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modes based on user content and data-sharing consent and to understand the impact and quality of incentives. The 
users have complete control of their data, knowing which data is used for locally inferring the system’s models and 
which is used for training new models in a secure and privacy-preserving manner. Following a federated learning 
setting and security protocols, sensitive data must not leave the users’ premises at any given moment. 

Regarding future work, the methodology will be validated within real-world scenarios. Data from past and ongoing 
initiatives (namely other R&D projects) is being used as well as open data and third-party platforms to ensure the 
solution is as off-the-shelf as possible (although local context and data will help personalise it to the target 
communities). Also, we want to evaluate different strategies for the federated system and understand the impact of 
adding differential privacy to real-world use cases. 
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