
Under the supervision of 
João Tiago Paulo 
Pedro Gabriel Ferreira 

Towards a Privacy-Preserving 
Distributed Machine Learning 
Framework
Cláudia Brito, 2024

Doctoral Program in Informatics



Towards a Privacy-Preserving Distributed Machine Learning Framework

Privacy and Security in Machine Learning
Motivation

2



Towards a Privacy-Preserving Distributed Machine Learning Framework

•Machine learning is growing in terms of applicability and complexity (i.e., 
models and datasets).
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•Machine learning is growing in terms of applicability and complexity (i.e., 
models and datasets).

•Increasing the need to outsource the computation and storage to untrusted 
third-parties.

•Current regulations were built to protect user’s privacy.
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Privacy and Security in Machine Learning
Motivation

Privacy-Preserving 
Distributed Machine Learning

Machine 
Learning

Distributed 
Computation

Privacy
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Cloud Computing

High-Performance Computing

Linear Regression

Alternating Least Squares

Deep Neural Networks

Principal Component Analysis

…

Secure Multi-Party Computation

Homomorphic Encryption

Differential Privacy

Trusted Execution Environments

Mobile/Edge Devices
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Adversarial data 
injection

Wrongly trained 
models

Direct access to 
stored data+
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Privacy and Security in Machine Learning
ML Pipeline
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Reconstruction of raw 
data

Direct access to 
feature vectors
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Direct querying 
access

Check for specific data 
point on trained dataset

Model parameters 
openly available+
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Privacy and Security in Machine Learning
Distributed ML

•Efficient and scalable. 

10

MapReduce Federated 
Learning

Cloud Mobile
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Privacy and Security in Machine Learning
Privacy-Preserving ML

•Software-based


‣ Homomorphic Encryption


‣ SMPC


‣ Differential Privacy
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‣ Trusted Execution Environments 
(Intel SGX, AMD SEV, Trustzone)
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Privacy and Security in Machine Learning
Privacy-Preserving ML

•Software-based


‣ Homomorphic Encryption


‣ SMPC


‣ Differential Privacy

11

•Hardware-based


‣ Trusted Execution Environments 
(Intel SGX, AMD SEV, Trustzone)

➡ Common cryptographic schemes impose impractical overheads.


➡ TEEs’ performance depends on the number of computations, I/O 
operations and trusted computing base (TCB).
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> Accuracy impact.
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Privacy and Security in Machine Learning
Challenges

Challenge #1 - Privacy 

> Trusting third-parties.


> Rewrite algorithms.

12

Z

Challenge #3 - Performance 

> Low application performance.


> High resource consumption.

 Challenge #2 - Utility 

> Use case specific.


> Accuracy impact.
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Privacy and Security in Machine Learning
Challenges
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Z
Is it possible to balance privacy, 

performance, and utility in a PPDML 
solution? 
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Contributions

✦SOTERIA: A generic PPDML solution built on top of Apache Spark and MLlib 

based on computation partitioning1,2.


✦GYOSA: A specialized privacy-preserving solution built on top of Apache 

Spark and Glow to handle genomic data3.


✦ TAPUS: A FL prototype to ensure user’s mobility data privacy4,5.

14

1. Brito, C., Ferreira, P., Portela, B., Oliveira, R. and Paulo, J. “SOTERIA: Preserving Privacy in Distributed Machine Learning.” In Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, 2023.

2. Brito, C., Ferreira, P., Portela, B., Oliveira, R. and Paulo, J. “Privacy-Preserving Machine Learning on Apache Spark.” In IEEE Access, 2023. 

3. Brito, C., Ferreira, P. and Paulo, J., “A Distributed Computing Solution for Privacy-Preserving Genome-Wide Association Studies.” Available as a preprint in bioRxiv and submitted for JBHI.

4. Pina, N., Brito, C., Vitorino, R., Cunha, I. “Promoting sustainable and personalized travel behaviors while preserving data privacy.” In Transportation Research Procedia - Proceedings of TRALisbon, 2022. 

5. Brito, C., Pina, N., Esteves, T., Vitorino, R., Cunha, I., Paulo, J. “Promoting sustainable and personalized travel behaviors while preserving data privacy.” Accepted on Transportation Engineering (TRENG), 2024. 
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SOTERIA
Preserving Privacy in Distributed Machine Learning
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‣ General applicability for ML workloads:


➡ Several algorithms from Spark’s Machine Learning API. 


‣ Privacy-by-design: 


➡ Plaintext information only inside the enclaves (by resorting to Intel SGX).


‣ Balanced overhead:  

➡ Novel partitioning scheme balancing privacy and performance. 


‣ Low intrusiveness: 


➡ Processing flow remains unchanged.
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SOTERIA
Results
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SOTERIA
Results

•Soteria-P deals better with the data volume increase.
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SOTERIA
Results

•Soteria-P deals better with the data volume increase.

•Soteria-P consistently outperforms SGX-Spark and Soteria-B.
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SOTERIA
SUMMARY

•SOTERIA introduces a novel partitioning scheme (Soteria-P) allowing 
specific ML operations to be deployed outside trusted enclaves.


‣ Offloading non-sensitive operations from enclaves while covering several 
ML attacks.


‣ Support of numerous ML algorithms.


‣ Non-intrusive to the clients flow.

19



➡ Can SOTERIA be applied to a specific use case such genomic analysis?

20
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GYOSA
Privacy-Preserving Machine Learning for Genome-Wide Association Studies

•Genomic data is extremely sensitive and presents a different analysis pipeline.


‣ Different algorithms, different data types.
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GYOSA
Privacy-Preserving Machine Learning for Genome-Wide Association Studies

•Genomic data is extremely sensitive and presents a different analysis pipeline.


‣ Different algorithms, different data types.


•GYOSA extends SOTERIA allowing the computation of GWAS:


‣ Updated encryption module to support genomic data types (i.e., VCFs). 


‣ Extended support for Glow, allowing the partitioning of regression-based 
algorithms built for GWAS.

21
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GYOSA
Privacy-Preserving Machine Learning for Genome-Wide Association Studies
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Privacy-Preserving Machine Learning for Genome-Wide Association Studies
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•The runtime execution decreases by 2.4 hours.
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GYOSA
Privacy-Preserving Machine Learning for Genome-Wide Association Studies
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•The runtime execution decreases by 2.4 hours.

•No accuracy impact.
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GYOSA
SUMMARY

•GYOSA extends SOTERIA’s applicability with a tailored pipeline processing, 
e.g., for genomic association tests. 


‣ Offers the first distributed SGX-based solution for genomic data. 

23



➡How can we privacy-preserve data when considering mobile devices and 
restricted hardware?

24
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Federated Learning and Mobile Devices
Protecting User’s Mobility Patterns with Differential Privacy

• Mobile devices collect several user-specific data.

• Mobile sensors can be used to understand user’s mobility patterns.

• Lack of privacy measures.

25
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TAPUS
Protecting User’s Mobility Patterns with Differential Privacy
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‣ AI model to identify transportation mode.


‣ DP-based noise added to local data or gradients.
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‣ AI model to identify transportation mode.


‣ DP-based noise added to local data or gradients.

Local Noise



Towards a Privacy-Preserving Distributed Machine Learning Framework

TAPUS
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TAPUS
Protecting User’s Mobility Patterns with Differential Privacy

26

‣ AI model to identify transportation mode.


‣ DP-based noise added to local data or gradients.

DP-FedAVG
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•Local noise significantly impacts the accuracy and quality of the model.
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TAPUS
RESULTS

•Local noise significantly impacts the accuracy and quality of the model.

27

Setup
50 clients: two vCPUs and 8 GB memory

1 Parameter: eight vCPUs and 32 GB memory

Epsilon: 0.3; Gradient Clipping: 0.1

•Increasing the number of clients, increases the overall noise and decreases 
the model’s accuracy.

16% accuracy 
impact
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TAPUS
SUMMARY

‣Relies on DP-based mechanisms to safeguard users from attacks.


‣ Increasing the amount of noise added to the gradients of the model’s 
parameters decreases the model’s accuracy.


‣Although the convergence rate of the model is maintained with the increase 
in the number of clients, the model’s accuracy decreases (up to 16%).

28
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cloud environments.
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Conclusion

Is it possible to balance privacy, performance, and utility in a PPDML solution?

29

1. SOTERIA presents a novel partitioning scheme for a distributed framework that 
guarantees the privacy of data while decreasing the performance overhead in 
cloud environments.

2. GYOSA shows that SOTERIA can be extended to specific use cases without 
impacting the accuracy of results.

3. TAPUS explores different levels of privacy and their impact on the accuracy and 
quality of the models for mobile environments.
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